Fast algorithms for Toeplitz and Hankel matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for Toeplitz and Hankel Matrices

The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and of Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess add...

متن کامل

TR-2003004: Superfast Algorithms for Singular Toeplitz/Hankel-like Matrices

Applying the superfast divide-and-conquer MBA algorithm for generally singular n × n Toeplitz-like or Hankel-like integer input matrices, we perform computations in the ring of integers modulo a power of a fixed prime, especially power of 2. This is practically faster than computing modulo a random prime but requires additional care to avoid degeneration, particularly at the stages of compressi...

متن کامل

Irreducible Toeplitz and Hankel matrices

An infinite matrix is called irreducible if its directed graph is strongly connected. It is proved that an infinite Toeplitz matrix is irreducible if and only if almost every finite leading submatrix is irreducible. An infinite Hankel matrix may be irreducible even if all its finite leading submatrices are reducible. Irreducibility results are also obtained in the finite cases.

متن کامل

Fast Polynomial Transforms Based on Toeplitz and Hankel Matrices

Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive O(N(logN)) algorithms, based on the fast Fourier transform, for converting coefficients of a degree N polynomial in one polynomial basis to coefficients in another. Numeri...

متن کامل

Split Algorithms and ZW-Factorization for Toeplitz and Toeplitz-plus-Hankel Matrices

New algorithms for Toeplitz and Toeplitz-plus-Hankel are presented that are in the spirit of the “split” algorithms of Delsarte/Genin. It is shown that the split algorithms are related to ZW-factorizations like the classical algorithms are related to LU-factorizations. Special attention is paid to skewsymmetric Toeplitz, centrosymmetric Toeplitz-plus-Hankel and general Toeplitz-plus-Hankel matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.12.001